

JBF-003-1161003

Seat No.

M. Sc. (Sem. I) Examination

December - 2019

Mathematics: CMT-1003

(Topology - I)

Faculty Code: 003

Subject Code: 1161003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) There are five questions.
- (2) Attempt all the questions.
- (3) Each question carries equal marks.

1 Answer any seven questions.

 $7 \times 2 = 14$

- a) Define: Closed set. Give an example to show that arbitrary union of closed set need not be closed.
- b) Prove that a space (X, τ) is a discrete space if and only if $\forall x \in X, \{x\} \in \tau$.
- c) Define: Convergence sequence in a metric space.
- d) State Hausdorff's Criterian.
- e) Define: Interior of a set. If $A \subset B$ then prove that $A^{\circ} \subset B^{\circ}$.
- f) Define: Continuity of a function at a point.
- g) Prove that locally connectedness is topological property.
- h) Define: Co-finite topology.
- i) Define: Homeomorphism with an example.
- j) Define: Locally path connected space.

2 Answer any two.

 $2 \times 7 = 14$

- a) Prove that lower limit topology on $\mathbb R$ is finer than the standard topology on $\mathbb R$.
- b) Prove that $\tau = \{U \subseteq \mathbb{R}; \text{ for each } x \in U, \text{ there is an open interval } (a, b) \ni (a, b) \subset U\}$
- c) Let (X, τ) be topological space. Then prove that
 - 1) X, \emptyset are closed set.
 - 2) Arbitrary intersection of closed set is closed.
 - 3) Finite union of closed set is closed.

JBF-003-1161003]

1

[Contd...

3 Answer the following.

 $2 \times 7 = 14$

- a) Let (X, τ) be topological space and Y be non-empty subset of X. Let $\tau_Y = \{G \cap Y; G \in \tau\}$.
- b) Let X and Y be topological spaces. Then prove that $\mathcal{B}_{X \times Y} = \{U \times V; U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$ is a basis for some topology on $X \times Y$.

OR

- a) If (X, d) be a metric space and $\mathcal{B} = \{Bd(x, \varepsilon)/x \in X, \varepsilon > 0\}$ then prove that \mathcal{B} is a basis for some topology on X.
- b) Let X and Y be spaces. $A \subset X$ and $B \subset Y$. Then prove that $\overline{(A \times B)} = \overline{A} \times \overline{B}$

4 Answer any two.

 $2 \times 7 = 14$

- a) Suppose X and Y are fopological space and $f: X \to Y$ be any function. Prove that f is continuous iff f is continuous at every point of X.
- b) State and prove Pasting Lemma.
- c) Prove that
 - 1) If $A \subset X$ then $\overline{A} = \{x \in X, \text{ for any open set } U \text{ containing } x, U \cap A \neq \emptyset\}$.
 - 2) If $A \subset X$ then $\overline{A} = A' \cup A$.

5 Answer any two.

 $2 \times 7 = 14$

- a) Prove that $X \times Y$ is a locally path connected if and only if X and Y are locally path connected.
- b) If X is connected and locally path connected then prove that X is path connected
- c) Suppose X and Y are topological space. If $f: X \to Y$ is continuous and onto. If X is connected then prove that Y is also connected
- d) Prove that
 - 1) If C is a component and A is a connected set then either $A \cap C = \emptyset$ or $A \subset C$.
 - 2) If C is a component then C is a maximal connected subset of X.
 - 3) If C is a component then C is a closed subset of X.