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Instructions :
(1) There are five questions.
(2) Attempt all the questions.
(3) Each question carries equal marks.

1 Answer any seven questions. 7% =14

a) Define: Closed set. Give an example to show that arbitrary union of closed set

need not be closed.

b) Prove that a space (X, 7) is a discrete space if and only if VxeX, {x}er.
¢) Define: Convergence sequence in a metric space.

d) State Hausdorff’s Criterian.

e) Define: Interior of a set. If A © B then prove that A° ¢ B°.

f) Define: Continuity of a function at a point.

g) Prove that locally connectedness is topological property.

h) Define: Co-finite topology.

i) Define: Homeomorphism with an example.

J) Define: Locally path connected space.

2 Answer any two. 2x7 =14
a) Prove that lower limit topology on R is finer than the standard topology on R.

b) Prove that7 = {U € R; foreach x € U, there is an open interval
(a, b) 3 (a, b)) cU}
¢) Let (X, 1) be topological space. Then prove that
1) X, are closed set.
2) Arbitrary intersection of closed set is closed.
3) Finite union of closed set is closed.
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3 Answer the following. 2x7 =14

a) Let (X, 1) be topological space and Y be non-empty subset of X.
Let Ty ={GNY; Ger1}.
b) Let Xand Y be topological spaces. Then prove that

Byxy = {U X V;UisopeninX andV is openin Y} is a basis for some topology
onX XYVY.

OR

a) If (X, d) be a metric space and B = {Bd(x, £)/xeX, e > O}then prove that
B is a basis for some topology on X.

b) LetX and Y be spaces. A € X and B € Y. Then prove that (A X B) = A x B

4 Answer any two. 2x7=14

a) Suppose Xand Y are fopological space and f: X — Y be any function. Prove that f is
continuous iff /is continuous at every point of X, '
b) State and prove Pasting Lemma.

c) Prove that

1) If A c X then A = {x € X, for any open set U containing x,U N A # @}
2) fAcXthend=AUA, -

S Answer any two. 2x7=14

a) Prove that X x Y is a locally path connected if and only if X and Y are locally path
connected.

b) If X is connected and locally path connected then prove that X is path connected

¢) Suppose Xand Y are topological space. If f: X — Y is continuous and onto. If X is
connected then prove that Y is also connected

d) Prove that
1) If Cis a component and 4 is a connected set then eitherANC=0orAcC.

2) If Cis a component then C is a maximal connected subset of X
3) If Cis acomponent then C is a closed subset of X
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